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ABSTRACT 
 

Poincaré asserted that any non-Euclidean geometry can and should be reduced to Euclidean one by correcting physics. 
However, Einstein proposed to describe gravity using Riemannian geometry. From the viewpoint of Poincaré, this was 
an unreasonable step that can lead physicists into mathematical jungles. In this paper we used Euclidean geometry 
instead of Riemannian geometry. To do this, we introduced a new universal law of compression and expansion of all 
bodies, including atoms, in a gravitational field. In the case of a weak field, a new approach leads to the same equation of 
motion as in general relativity. In the case of a strong field, a new approach allows us to solve the problem of black holes 
and the problem connected to Mach's principle. An experiment with atomic clocks is proposed, which will allow us to 
determine whether geometry in a gravitational field really becomes Riemannian or it remains Euclidean. 
 
Keywords: Riemannian geometry, general relativity, gravity, atomic size, atomic clock, universal law of compression of 
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INTRODUCTION 
 
In 2016, the LIGO Scientific Collaboration and the Virgo 
Collaboration have announced the discovery of burst 
gravitational waves from the merger of the 29 and 36 
solar mass black holes (Abbott et al., 2016). Nevertheless, 
until now it is unknown reliably whether black holes exist 
or not, and what is the character of physical processes 
close to super massive objects. It should be emphasized 
that the gravitational potential created by a black hole is 
approximately equal to the gravitational potential created 
by the entire Universe in near-Earth space. Therefore, the 
influence of a black hole on geometry of spacetime is 
comparable to the effect of all the matter of the Universe 
on the geometry in a terrestrial laboratory. However, we 
do not know how the distribution of matter in the 
Universe affects the physical processes in a laboratory. 
This problem is called Mach’s principle. When Einstein 
had been creating a general relativity, he hoped that it 
would satisfy Mach’s principle (Einstein, 1916). But 
Mach’s principle still remains a deep and unresolved 
problem of physics (Kittel et al., 1973). Numerous 
attempts to introduce Mach's principle into physics 
continue nowadays. 
For example, Zhang (2018) believes that Mach's principle 
would help solve the problem of the accelerating 
expansion of the Universe and thus solve the problem of 
dark energy. Chugreev (2015) is confident that Mach's 

principle will help to choose the correct cosmological 
solutions. He concludes that the scenario of the open 
Universe contradicts the idea of a massless graviton. 
Karimov et al. (2018) analyzed the possible influence of 
Mach’s principle on the Sagnac effect and the twins 
paradox. In 2016, the Springer publishing issued a 
collection in which Mach's principle and scalar-tensor 
theories of gravitation based on this principle are 
discussed (Asselmeyer-Maluga, 2016). 
Usually Mach’s principle is given the following sense. If 
we remove test bodies far enough from all the massive 
objects, the inertia of these test bodies will tend to zero. 
Einstein has put this sense in Mach’s principle (Einstein, 
1917). In his lecture on gravitation, Richard Feynman 
suggests another approach to Mach's principle. He 
believes that the spacetime scale given by quantum 
mechanics is determined by the distribution of all the 
matter in the Universe, and it changes near massive 
objects (Feynman et al., 1995). If this is the case, then we 
are not able to describe correctly the physical processes 
near super massive objects without taking into account 
Mach’s principle. 
Another problem related to the detecting gravitational 
waves is the speed of gravity propagation. There are 
models in which the propagation velocity of four-
potential waves differs from the speed of light. 
Zakharenko has developed a model that allows for a 
complicated system consisting of electrical, magnetic, 
gravitational, and cogravitational subsystems to have an 
evaluated propagation speed many orders of magnitude Corresponding author e-mail: yanchilin@yandex.ru 
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higher than the speed of light (Zakharenko, 2016, 2017). 
And the evaluated limiting speed must be below 1027 m/s. 
He considers the possible practical application of this 
model in the paper (Zakharenko, 2018). If something is 
spreading faster than light, then its path will be different 
from the path of a light beam. Which of these paths 
should be chosen as a geodesic? Poincaré emphasized that 
the choice of a straight line affects the kind of geometry 
(Poincaré, 1905). Poincaré also believed that the choice of 
a straight line depends on the spatial scale. So, these 
concepts are tightly connected to each other. 
 
In this paper, we discuss the relationship of Riemannian 
geometry to a change in the spacetime scale. We consider 
a new law that determines the atomic size in a 
gravitational field. We obtain this law using Poincaré's 
assumption that Riemannian geometry can always be 
reduced to Euclidean geometry. We shows that the new 
law allow harmonizing gravity and Mach’s principle. 
Then we discuss an experiment with high-precision 
atomic clocks, which can be carried out in a modern 
metrology laboratory. This experiment allow to test the 
new law and find out whether the geometry of spacetime 
really becomes Riemannian near massive objects or it still 
remains Euclidean. 
 
Poincaré explains to physicists why they should 
preserve Euclidean geometry 
Mankind used Euclidean geometry during two thousand 
years, until other geometries were created in the 19th 
century. Then the question arose: what kind of geometry 
does our space have? In Euclidean geometry, the sum of 
angles of a triangle is exactly 180°. In hyperbolic 
geometry of Lobachevsky this sum is less than 180°, in 
Riemannian elliptic geometry this sum, on the contrary, is 
greater than 180°. Having measured the sum of angles of 
a large triangle, we can experimentally determine 
geometry of our space. Is this correct? No, Henri Poincaré 
said. Let us consider his reasoning. 
 
Suppose we have experimentally established that the sum 
of angles of a large triangle is 200°. In this case, we have 
two options. We can assume that the sides of this triangle 
are straight lines, and the geometry of space is 
Riemannian. We can assume with the same right that 
space is Euclidean, but sides of the triangle are curved. 
Poincaré emphasized that geometry depends on a 
definition of straight line. We must choose a definition of 
straight line. Experience cannot help us in this matter 
(Poincaré, 1905). Indeed, we can assume that a ray of 
light is curved near the Sun. We can assume that a ray of 
light is straight line, and the space near the Sun is curved. 
But what is curved: a ray of light or space? 
 
We cannot conduct experiments with space. We can only 
explore mutual arrangement of material bodies and paths 
of light rays. Poincaré stressed that geometry is connected 

to physics. We cannot study geometry in isolation from 
physics. Geometry and physics are united into one. We 
can experimentally test them together, but not separately. 
Therefore, the matter of geometry of our space does not 
make sense. This is the same if someone asks the 
following question: How correctly to measure distances – 
using meters or feet? You can measure by meters, you can 
measure by feet. This is the matter of convenience and 
agreement. We can also say the same about geometry. To 
describe the world, we can use Euclidean geometry and 
we also can use non-Euclidean geometry. We use 
Euclidean geometry because it is simpler and more 
convenient (Poincaré, 1902). Poincaré tried to develop 
this subject and look into the future. 
 
Let us imagine that physicists discover that geometry of 
our world is Rimannian. In this case, they have two 
possibilities. First, to leave physics unchanged and adopt 
Rimannian geometry. Secondly, to make some changes in 
physics in order to do geometry to be Euclidean. Poincaré 
believed that geometry and physics are tightly connected. 
So we can change both them at our discretion. Correcting 
physics we can “straighten” geometry. 
 
What will physicists do if they discover that our world is 
non-Euclidean? Will they accept non-Euclidean 
geometry? Or maybe physicists will correct physics? 
Poincaré was sure that physicists would correct physics. 
He argued that physicists would not accept non-Euclidean 
geometry. Why? The reason is because non-Euclidean 
geometry is very complex. It is easier to correct physics 
(Poincaré, 1902). Poincaré is an outstanding physicist, but 
first of all he is a mathematician. This mathematician tells 
physicists that non-Euclidean geometry is very complex 
and difficult to understand. Poincaré did not know in 
advance what changes would have to be made in physics 
in order to do the geometry to be the Euclidean one, if 
necessary. But he was sure that complicating physics 
would be incomparably simpler than non-Euclidean 
geometry. Physicists can complicate physics very 
strongly, but this complication cannot be compared with 
the adoption of non-Euclidean geometry. Poincaré 
thought that way (Poincaré, 1902). 
 
A few years later, Einstein created general relativity. To 
describe gravity, he suggested using Riemannian 
geometry. Physicists accepted it. Contrary to Poincaré, 
they did not correct physics to return to Euclidean 
geometry. Why? 
Before answering this question, let us sum up Poincaré 's 
thoughts on geometry and physics. 
1. Poincaré asserted that geometry is united with physics. 
Therefore, it is pointless to talk about geometry of the 
world in isolation from physics. Almost none of modern 
scientists dispute this deep statement. 
2. Poincaré asserted that any non-Euclidean geometry can 
be reduced to Euclidean geometry. This claim is 



Yanchilin 4511

unchallenged since there are simple mathematical 
algorithms for the transition from non-Euclidean 
geometry to Euclidean geometry and vice versa (Poincaré, 
1902; Klein, 1928). 
3. Poincaré asserted that if we discover that geometry of 
our world is non-Euclidean, then this geometry can easily 
be reduced to Euclidean geometry. For this it is sufficient 
that the unit of length be variable. The unit of length is a 
physical object. So correcting solid-state physics, we can 
correct geometry. This assertion follows directly from the 
preceding one. Therefore, no one disputes it. But some 
scientists are afraid that a change in solid-state physics 
lead to some kind of absurdity (Carnap, 1966).  
4. Poincaré asserted: when physicists encounter non-
Euclidean geometry, they will correct physics in such a 
way as to do geometry to be Euclidean geometry. That 
did not happen. Physicists accepted Riemannian 
geometry. Now we will try to find out why they did this. 
 
Why did not physicists listen to Poincaré and accepted 
Riemannian geometry? 
Some scientists have already investigated this issue. For 
example, Carnap has written three chapters in his book 
The Philosophical Foundations of Physics. Carnap refered 
with great sympathy to the views of Poincaré and 
described them in detail. He agreed that physicists always 
have a choice. Physicists can choose Riemannian 
geometry or can correct physics and preserve Euclidean 
geometry. Why did Einstein and his followers choose 
Riemannian geometry? Carnap responded as follows. To 
preserve Euclidean geometry, physicists must come up 
with new and strange laws about compression and 
expansion of solids. And if we accept Riemannian 
geometry, then such strange laws will not be needed 
(Carnap, 1966). Moreover, gravity will become easier. 
According to Newton, bodies in a gravitational field move 
along curved paths. According to Einstein, bodies in a 
gravitational field move along geodesics. Thus, Einstein 
simplified Newton's theory of gravity, but at the same 
time he complicated geometry. Carnap believed that 
physicists having accepted general relativity won in 
simplicity (Carnap, 1966).  
 
Many scientists agree with Carnap’s conclusion 
(Grünbaum, 1963). But it is difficult to agree with such a 
conclusion. General relativity is hard to understand and 
cumbersome. According to general relativity, any ballistic 
trajectory is a straight line in a four-dimensional curved 
pseudo-Euclidean spacetime. This simplification is only 
in words, but not in fact. Even Pauli believed that general 
relativity is unsatisfactory since in it there is only one 
experiment per hundred pages of theory filled with the 
most difficult mathematical conclusions (Heisenberg, 
1969).  
 
I believe that physicists accepted Riemannian geometry 
because of a psychological reason. Physicists unlike 

mathematicians are very serious about physics. Physicists 
will not recreate the foundation of physics just because 
someone has suggested it to them. The history of physics 
shows that physicists with great difficulty agree to the 
restructuring of the foundation of their science. They do 
this only under the influence of irrefutable and repeatedly 
verified experimental facts. The process of changing the 
paradigm in physics takes a long time and is painful 
(Kuhn, 1970). Therefore, physicists will adopt a complex 
Riemannian geometry, but they will not touch the 
foundation of physics. This is exactly what happened. 
Can we conclude that Poincaré made a mistake with the 
forecast? I think he did not. Poincaré argued that if 
physicists get rid of non-Euclidean geometry, they would 
greatly facilitate their own lives. This is because non-
Euclidean geometry is very difficult even for a 
mathematician, and it is a serious problem for a physicist. 
We see that general relativity is a very cumbersome 
theory in mathematics. We did not listen to Poincaré and 
got a problem. Maybe it makes sense to simplify the 
theory of gravity?  
 
Strange laws of compression and expansion of solids 
Modern scientists are looking for new physics. For this 
purpose, they built the Large Hadron Collider, gravity-
wave observatories, and many other things. We do not 
need to build anything to find new physics. Our task is to 
simplify the theory of gravity. We must transform 
Riemannian geometry into Euclidean geometry. If we do 
this, new physics will open to us. 
 
Let us choose some unit of length. It can be a solid rod 
(platinum iridium bar) or a wavelength of some spectral 
line. Let us have two completely identical units of length. 
Let us move the first unit of length closer to the Sun. Has 
the length of the first unit of length changed relative to the 
second one? Can we answer this question? We can 
compare the units of length if they are in the same spots in 
space. We cannot compare the units of length removed 
from each other. This subject is discussed in detail by 
Reichenbach in his monograph The Philosophy of Space 
and Time. He comes to the conclusion that any universal 
expansion or contraction of bodies is unobservable 
because we cannot compare remote units of length. 
Reichenbach stresses that a matter of the invariability of 
units of length is matter of definition, not cognition. He 
suggests that all units of length remain unchanged in a 
gravitational field by definition (Reichenbach, 1958). It 
must be emphasized that this assumption is the basis of 
general relativity. This was directly written by Einstein in 
his fundamental article Foundation of the General Theory 
of Relativity (Einstein, 1916). 
 
Poincaré argued that the choice of geometry is a private 
matter for everyone. Therefore, this issue is not solved 
experimentally, but by agreement. We can assume that a 
unit of length always remains unchanged at different 
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points in space and we obtain non-Euclidean geometry. 
We can assume that a unit of length varies according to a 
certain law so that geometry remains Euclidean. The 
second way is simpler and we should follow it (Poincaré, 
1902).  
 
General relativity has chosen the first way. Units of length 
remain unchanged, and geometry becomes Riemannian 
(Einstein, 1916). If we measure the circumference and the 
diameter of the circular orbit of the planet using a unit of 
length, we will find that the ratio of the circumference to 
the diameter is less than the number π. According to 
general relativity, this is because all distances near the 
Sun increase (Landau and Lifshitz, 1975). As a result, we 
get Riemannian geometry. But we can assume that all 
units of length are reduced near the Sun in such a way that 
distances remain unchanged. In this case, we preserve 
Euclidean geometry. From this point of view, increasing 
distances in a gravitational field is a seeming effect 
caused by the fact that units of length are reduced. 
 
If Poincaré lived to the creation of general relativity, then, 
perhaps, he would recreate this theory to Euclidean 
geometry. The whole theory of gravity would change and 
become Euclidean. 
 
I'm not a mathematician, but a physicist. For me, this way 
is too hard. It is easier for me to construct a new theory 
than to modernize general relativity. I propose to do the 
following. We assume that geometry in a gravitational 
field remains Euclidean. This is our conscious choice 
because it is so much easier. We also assume that units of 
length change in a gravitational field according to some 
new law unknown to us. We will require that a new 
theory of gravitation transforms into Newtonian theory in 
the case of a weak field and slow motions. As a result, we 
will find out a new law for changing the dimensions of 
solids. Then we will compare the new theory with general 
relativity. And we will find out what kind of experiment 
should be carried out to refute one of the two theories of 
gravity. 
 
Conservation of Euclidean geometry opens up the New 
Physics of Atoms 
In order to preserve Euclidean geometry, we assume that 
the length of the platinum-iridium bar (the standard meter 
stored in Sevres, France) or any other standard meter will 
change in a gravitational field. Consider a gravitating 
body of mass M. Let L0 be the size of a standard meter at 
a large distance from the mass M, L(r) is the size of the 
same standard meter located at a distance r from the 
center of mass M. We assume that near M space remains 
Euclidean, and spacetime remains pseudo-Euclidean. 
There is no curvature. The equation for the square of the 
interval ds is  

2222 dldtcds     (1) 

Here c is the speed of light, dl is the distance element in 
the usual 3-dimensional Euclidean space. 
 
Equation (1) is fulfilled for any observer. But if the 
remote observer determines the interval ds near the mass 
M taking into account the change in scale then he will 
find out that this interval has changed because the 
standard of length L (r) has changed. We will represent L 
(r) in the form: L(r) = L0/k(r), where k(r) is an unknown 
scale factor to be found. Since 1983, the standard meter is 
the length of the path travelled by light in a vacuum in 1 / 
299 792 458 of a second. Therefore, the product cdt is 
proportional to the standard meter. Close to the mass M, 
the standard meter is reduced by k(r) times, so c2dt2 in 
equation (1) should be divided by k2(r). The distance 
between two points is by definition equal to the number of 
meter standards between these points. If near the mass M 
the meter standard is reduced by k(r) times, then all 
distances between the points increase by k(r) times. 
Taking this into account we can write the interval ds near 
the mass M for the remote observer 
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Here c0 is the speed of light at a great distance from the 
mass М, dt0 is the time interval at a large distance from 
the mass М, dl0 is the distance between points near the 
mass M in the scale of the remote observer. The first term 
on the right-hand side of equation (2) shows that the 
standard of length L0  c0dt0 is reduced near the mass M 
by k(r) times. The second term shows that the distance 
between the points dl near the mass M increases inversely 
proportional to the standard of length, that is, increases by 
k(r) times. 
 
Let us consider a body that under the action of gravity 
moves near the mass M. If we consider an infinitesimal 
part of the trajectory, then the body on it will move almost 
in a straight line and almost at a constant speed. 
Therefore, the motion of the body on an infinitesimal part 
of the trajectory can be represented as  

0ds    (3) 

For the observer that at a remote distance from the mass 
M, equation (3) should be corrected taking into account 
(2) 
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We will solve equation (4) and find the scale factor k(r). 
Suppose that the gravitational field of the mass M is weak 
and the value of k(r) differs little from 1. Let us write k(r) 
as k(r) = 1 + , where   << 1. In this case: k2(r) = 1 + 
2, 1/k2(r) = 1  2. We will rewrite equation (4): 



Yanchilin 4513

0)21()21( 2
0

2
0

2
0

00  dtc
dldtc  . Given that 

the speed of the body 
0

0
dt
dlV  , we get: 

  2
0

2

2
0

2

00 221
c
V

c
Vdtc   = 

0
2

1 02
0

2

2
0

2

0 









 dt

c
V

c
Vc  . We will delete 

the unit since the variation of the constant value is zero. 
We will neglect the last term because of its smallness. 
Multiply it by the constant  с0. As a result, we get 
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According to Newton's theory, the motion of a body in a 
gravitational field of mass M is determined by the 
variational equation (Feynman et al., 1977): 
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Here G is the gravitational constant. Comparing equations 
(5) and (6) we obtain: c2  = GM/r. Therefore, the 
compression ratio of the scale is 

21)(
rс
GMrk    (7) 

Thus, according to equation (7) any standard of length L0 
is reduced by k(r) times near the mass M. Since the 
standard of length is determined by an atom’s size, then 
any atom should be reduced by k(r) times near the mass 
M. We obtained the law of atom compression in a 
gravitational field. Next, I will tell you how to verify the 
validity of equation (7) in a modern physical laboratory. 
And now we will compare a new approach to gravity and 
general relativity. 
 
New interpretation of the interval squared and Mach’s 
principle 
According to Einstein, a large mass influences geometry 
of spacetime. As a result, pseudo-Euclidean geometry of 
4-dimensional spacetime (1) is curved. Therefore, 
Einstein proposed using Riemannian geometry to describe 
gravity. According to Poincaré, Einstein was entitled to 
use any geometry to describe gravity. But for technical 
reasons (it will be easier for everyone), Poincaré 
suggested always keeping Euclidean geometry (Poincaré, 
1902). 
 

Solving Einstein's equations for the case of a single 
gravitating mass M Schwarzschild found an expression 
for the interval squared. If the gravitational field of mass 
M is weak (GM/r << c2), then this expression (Landau and 
Lifshitz, 1975) is 
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It must be emphasized that all the gravitational fields in 
the Solar system are weak. Therefore, all experiments in 
the Solar system (cosmic and terrestrial, including the 
work of GPS) confirm equation (8) up to terms of the 
second order of smallness. The equation for the square of 
the interval (8) is interpreted in general relativity as 
follows. Near the mass M, distances increase, and the time 
intervals decrease (Landau and Lifshitz, 1975). 
Neglecting terms of the second order of smallness we can 
represent equation (8) as 
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The physical meaning of this equation is better 
understood in this form. We see that the first term (cdt) is 
divided by k(r) and the second term (dl) is multiplied by 
the same coefficient (7). If we assume that geometry of 
space near the mass M remains Euclidean, and geometry 
of spacetime remains pseudo-Euclidean (1), then it is not 
difficult to give a physical interpretation to equation (9). 
In modern physics, the value cdt is proportional to the 
standard of length, and the value dl is a distance between 
the points. Therefore, the new meaning of equation (9) is 
as follows. Near the mass M, any standard of length 
including an atom’s size is reduced by k(r) times, so all 
distances between points increase by k(r) times. 
We obtained equation (9), which coincides with equation 
(2), in a trivial way. We assumed that geometry remains 
Euclidean, and an atom’s size (the standard of length) 
changes in a gravitational field. We did not need either a 
complicated Riemannian geometry or a cumbersome 
tensor analysis. 
 
In his lectures on gravitation, Feynman tries to introduce 
Mach's principle into general relativity. He assumes that 
the unit in equation (8) is the spacetime scale created by 
distant galaxies. Proceeding from this, Feynman tries to 
calculate the scale change caused by the mass M. He gets 
the correct value except for the sign. The main problem is 
that the unit has a plus sign, and 2GM/rc2 has a minus 
sign. The correction introduced by the mass M has the 
opposite sign. Therefore, equation (8) is difficult to 
reconcile with Mach’s principle (Feynman et al., 1995). I 
propose to replace equation (8) by equation (9). Equation 
(9) can be reconciled with Mach’s principle. This subject 
is discussed in detail in (Yanchilin, 2003). 
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How can we find out a captain’s age by measuring the 
height of the mainmast? 
I agree with Poincaré that geometry is connected with 
physics. Therefore, you can correct physics to correct 
geometry. I agree that we should choose Euclidean 
geometry and correct physics because it will be much 
easier. But Poincaré goes further. He claims that our 
world does not have the certain geometry and we are not 
able to know the true geometry of our world. Poincaré 
asserts that no experience will ever contradict neither 
Euclidean geometry nor any other geometry (Poincaré, 
1902). For example, he rightly states that in experiments 
we investigate the relations of bodies, but not parts of 
space. However, if we do a lot of different experiments? 
Poincaré answers this question in the following way. It is 
not enough to know the mainmast’s height to determine 
the captain’s age. We can measure all the dimensions of 
the ship, but we will not know this age (Poincaré, 1902). 
 
At first glance, this eloquent example seems to be fair. All 
our experiments relate to the mutual arrangement of 
bodies (the size of the ship) and are not related to the 
internal structure of space (the age of the captain). But 
this is not the case. Poincaré's mistake in this matter is 
forgivable. When he reasoned about this, quantum 
mechanics had not yet been created. It was not known that 
the mainmast’s height specifies not only a spatial scale, 
but it also determines the time scale. In the real world, all 
things are interconnected to each other. Therefore, the 
captain’s age and the mainmast’s height are connected. 
Let us explore this issue. 
 
If we take a meter ruler and measure distances in a 
gravitational field, we will find that the distances increase 
near a large mass (Landau and Lifshitz, 1975). We can 
assume that the unit of length does not change and we can 
conclude that space is non-Euclidean. This approach was 
proposed by Einstein in general relativity (Einstein, 
1916). With the same right, we can assume that space is 
Euclidean, but the unit of length reduces near a large 
mass. Coefficient of compressibility of a meter (spatial 
scale) is determined by equation (7). In the first case, the 
atomic size remains unchanged in a gravitational field. In 
the second case, the atomic size reduces according to 
equation (7).  
 
These two approaches looked completely equal before the 
creation of quantum mechanics. But after quantum 
mechanics was created the situation changed. An atom’s 
size is related to its radiation frequency. If an atom’s size 
decreases in a gravitational field, then its radiation 
frequency changes. The radiation frequency of an atom 
determines the rate of an atomic clock. Therefore, 
comparing the rate of atomic clocks located at different 
altitudes in the laboratory we can find out whether an 
atom’s size changes in a gravitational field. 

It can be noted that Einstein in his paper Geometry and 
Experience discussed Poincaré's ideas about the 
connection between geometry and physics in detail. 
Einstein agreed that one can arbitrarily choose geometry 
or change some part of physics. He wrote that Poincaré's 
view of the connection between physics and geometry is 
true. Einstein agreed that there are no fundamentally solid 
and unchanging bodies. Why did not Einstein follow the 
way suggested by Poincaré? Answering this question 
Einstein wrote that we are still far from the theoretical 
foundations of atomic physics (Einstein, 1921). This is 
strange. The paper by Einstein was published in 1921. 
Bohr's paper On the Constitution of Atoms and Molecules 
was published in 1913. This paper contained formulas for 
the energy and frequency of atomic radiation and also for 
atomic sizes (Bohr, 1913). Using Bohr’s theory Einstein 
could evaluate consequences of changing an atom’s size 
in a gravitational field. Let us make these computations. 
 
Radiation energy of an atom depends only on its size 
The Schrödinger equation is solved for the hydrogen 
atom. The Bohr radius a of the hydrogen atom in the CGS 
system is 

22 / mea    (10) 
Here e is an electron’s charge (which is equal to a 
proton’s charge), m is an electron’s mass, and ћ is 
Planck’s constant divided by 2π (Landau and Lifshitz, 
1965). The Bohr radius is often used in atomic physics as 
an atomic unit of length. This is the natural standard of 
length. 
The energy levels En in the hydrogen atom have a discrete 
spectrum of values and are determined by Bohr’s formula 
(Landau and Lifshitz, 1965): 
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Here mp is a proton’s mass. While a transition of an 
electron from the level Еn to the level Еk (k < n), a photon 
is emitted with energy  = ћ = Еn – Еk and with 
frequency  = (Еn – Еk)/ћ. Bohr obtained equations (10) 
and (11) in 1913 (Bohr, 1913). Let us introduce a new 
value Z: 
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The value Z depends only on an electron’s charge and the 
dimensionless constants. According to general relativity, 
the dimensionless constants and an electron’s charge do 
not depend on the gravitational potential (Misner et al., 
1973). We will adhere to this viewpoint. Therefore, we 
can conclude that Z does not depend on the gravitational 
potential. A photon’s energy is 

2/ Zm  (13) 
We will multiply equation (10) by equation (13): 

const/ 2  eZa  (14) 
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We got a simple but interesting result. The energy of 
processes occurring in an atom including emission of 
photons is inversely proportional to its size. The smaller 
the size of atom a, the greater the energy of a photon 
emitted by it. And vice versa. Therefore, quantum 
mechanics restricts any theory of gravity. The spacetime 
scale in modern physics is connected to an atom and to 
the processes taking place in it including radiation. 
Therefore, the spacetime scale must change in a 
gravitational field to satisfy equations (10) and (14). 
 
According to general relativity, the deeper the atom is in a 
gravitational field, the lower the frequency of its radiation 
and the lower the energy of the emitted photon. We 
assumed that geometry remains Euclidean in a 
gravitational field. As a result, we came to the conclusion 
that atomic size in a gravitational field decreases (7) and 
the energy of the emitted photon increases (14). 
Accordingly, the frequency of an atom increases in a 
gravitational field, contrary to general relativity. And this 
is very good. This means that we can carry out a decisive 
experiment on the choice of geometry. 
 
Let us sum up. Poincaré showed that we are entitled to 
use any geometry to describe our world. Suppose we 
discovered that our world has Riemannian geometry. In 
this case, we can assume that solids change their 
dimensions so that geometry remains Euclidean 
(Poincaré, 1902). Einstein agreed with this viewpoint 
(Einstein, 1921). But he believed that Riemannian 
geometry is better than to introduce new laws for 
changing dimensions of solids (Einstein, 1916). Carnap 
discusses this subject in detail and concludes that there is 
no sense in introducing strange laws of compression and 
expansion of solids in order to preserve Euclidean 
geometry (Carnap, 1965). Reichenbach also discusses this 
subject in detail and concludes that all units of length 
should remain unchanged in a gravitational field by 
definition (Reichenbach, 1958). 
 
We see that Poincaré's viewpoint and the viewpoint of 
supporters of general relativity essentially coincide. The 
difference is only in one point. Poincaré proposes to 
preserve Euclidean geometry, but supporters of general 
relativity suggest preserving the constancy of solids in a 
gravitational field. 
 
In early 20th century, one could agree with Einstein's 
position, as there was no way to verify it. But now we 
have such an opportunity. Now we can check the strange 
laws of compression and expansion of solids. If the 
experiment confirms that the atomic size decreases in a 
gravitational field according to (7), then this will mean the 
following. Large masses do not curve the geometry of 
spacetime, but only affect the atomic size. Consequently, 
general relativity is incorrect. If the experiment refutes 

equation (7), then this will mean that Einstein is right and 
large masses curve spacetime. 
 
The decisive experiment to choose geometry 
Consider two identical atoms. One is on the Earth's 
surface and the other is at the height H. According to 
general relativity, the radiation frequency of the upper 
atom will be higher by a relative value 

2// сgH  (15) 
Here g is the gravitational acceleration. From a new 
viewpoint based on Euclidean geometry, the energy of a 
photon emitted by the upper atom will, on the contrary, be 
lower. From equations (7) and (14) it follows that 

2// сgH  (16) 
The atomic size depends on Planck’s constant (10). If the 
atomic size increases with height, we can conclude that 
Planck’s constant also increases with height. Accordingly, 
the radiation frequency of the upper atom decreases faster 
than its energy (16). The calculations performed in 
(Yanchilin, 2003) show: 

2/2/ сgH  (17) 
The frequency of atomic radiation determines the rate of 
an atomic clock. According to general relativity, the upper 
atomic clock will go faster than the lower one. From a 
new viewpoint, on the contrary, the lower clock will go 
faster. 
For the experiment, we need two precision atomic clocks 
with a relative error 1015. A clock of this accuracy is 
produced, for example, by the company Symmetricom. 
The first clock is installed on the lower floor of a high-
rise building, the second is on the upper floor. If the 
height difference is 100 m, then according to general 
relativity (15), the lower clock will lag about 1 ns per day. 
From a new viewpoint (17), the lower clock will go faster 
by 2 ns per day. Comparing the clock readings during 2 or 
3 weeks, we can refute either equation (15) or equation 
(17), or both of these equations. If equation (15) is 
confirmed, then general relativity based on Riemann 
geometry will be confirmed. If equation (17) is 
confirmed, then general relativity will be refuted. In 
addition, it will be proved that geometry in a gravitational 
field remains Euclidean, but the atomic sizes near Earth 
and other massive objects decrease. Thus, having 
conducted the experiment with atomic clocks we will be 
able to determine geometry of our world.  
 
Until now, it is not known how gravity affects the 
frequency of atomic radiation 
Many scientists are sure that the deeper an atom is in a 
gravitational field, the lower its radiation frequency. 
Many articles, textbooks and monographs on general 
relativity state that the atomic frequency decreases in a 
gravitational field and this is a many times verified 
experimental fact. For example, it is well known that a 
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light source reddens in a potential well. Proceeding from 
this, some specialists in general relativity conclude that 
the light frequency decreases in a gravitational field. But 
this conclusion is not entirely correct. Let us figure this 
out. 
 
We detect that the frequency of a light source becomes 
lower if it is lowered into a gravitational well. But we do 
not know why this happened. Perhaps the frequency of 
the source has dropped. Perhaps, the light flying out of a 
gravitational well lost its energy and frequency. The 
effect of the gravitational redshift is the sum of two 
effects. 
 
1. The frequency of a source placed in a gravitational well 
varies by a certain value X. 
2. The frequency of light when it flies out of a 
gravitational well decreases by some value Y. 
The sum of X and Y leads to a gravitational shift of the 
spectrum, which is measured in numerous experiments. 
But this effect may be interpreted in different ways. In 
order to correctly interpret the effect of gravitational shift 
we need knowing the values  X and Y separately. The 
value X shows how the frequency of atomic radiation 
depends on a gravitational potential. The value Y shows 
how the frequency of light changes when it moves up. 
This subject is discussed in (Okun, et al., 1999). From a 
new viewpoint, the values X and Y are different than in 
general relativity. But their sum is the same as in general 
relativity. This subject is discussed in (Yanchilin, 2003). 
How does the frequency of a photon change when it flies 
out of a gravitational field? How does the frequency of a 
radio signal change when it moves up? Let us see what 
authoritative sources write about this. 
 
In Berkeley Physics Course, the section 14.2 studies this 
subject. The authors of the textbook explain that a photon 
has energy and therefore according to Einstein's formula it 
has an inert mass. This inert mass according to the 
equivalence principle is equal to the gravitational mass. 
Thus, the photon has the gravitational mass and 
participates in the gravitational interaction. When the 
photon moves upward its energy and frequency decrease 
(Kittel et al., 1973). Born, Sciama, Hawking, Zeldovich 
and Novikov, and others hold this view (Born, 1962; 
Sciama, 1969; Hawking, 1998; Zeldovich and Novikov, 
1971). 
 
But Einstein in his paper On the influence of gravity on 
the propagation of light argues that the frequency of the 
electromagnetic wave remains constant when it moves up 
or down (Einstein, 1916). This view is held by Eddington, 
Pauli, Landau and Lifshitz, Weinberg, Will and others 
(Eddington, 2015; Pauli, 1958; Landau and Lifshitz, 
1975; Weinberg, 1972; Will, 1985). 
 

We can read in the most famous textbook on general 
relativity Gravitation, Chapter 7.2, that when a photon 
flying up in a gravitational field its energy should 
decrease, so its frequency decreases (Misner et al., 1973). 
But in the next section, the authors of the textbook state 
that the frequency of an electromagnetic wave cannot 
change when moving in a gravitational field (Misner et 
al., 1973). 
 
We can conclude from all this that until now, it has not 
been established experimentally whether the photon 
frequency changes when it moves upward. That is, the 
value Y is unknown. Therefore, the value X is also 
unknown. Consequently, it is still unknown how gravity 
affects the atomic frequency. It should be emphasized that 
some specialists in general relativity share this point of 
view and suggest the experiment with atomic clocks 
(Okun, 2000; Malykin, 2015). 
 
In the paper (Yanchilin, 2018), it is shown that when a 
photon comes up to the Sun, its energy increases two 
times faster than the energy of an ordinary body. 
 
CONCLUSION 
 
Einstein proposed using Riemann's geometry to describe 
spacetime in a gravitational field (Einstein, 1916). He 
achieved impressive results in that field. However, an 
analysis of geometric constructions performed by 
Poincaré showed that Einstein could easily use any other 
geometry and obtain the same results. Moreover, Poincaré 
argued that physicists must preserve Euclidean geometry 
since it leads to the same results in a simpler way. 
Therefore, Poincaré believed that physicists would retain 
Euclidean geometry by introducing new laws for the 
compression and expansion of solids. However, physicists 
did not follow this way and did not even try to follow it. I 
think it happened for psychological reasons. In this paper, 
we tried to reduce Riemannian geometry to Euclidean 
geometry. We assumed that the atomic size (unit of 
length) somehow changes in a gravitational field and 
depends on the magnitude of the gravitational potential. 
Proceeding from this, we obtained the equation for the 
interval squared in a gravitational field (2). Solving this 
equation in the case of a weak field, taking into account 
Newton's gravitation theory, we found a universal law of 
variation of all sizes including the atomic size in a 
gravitational field (7). The new approach leads to 
equation (9), which almost coincides with the 
corresponding equation in general relativity in the case of 
a weak field (8). Feynman also pointed out that equation 
(8) is difficult to harmonize with Mach’s principle, 
because the unit and a small additive to it have different 
signs. The new equation (9) does not have this drawback 
and it can easily be harmonized with Mach’s principle 
(Yanchilin, 2003). 
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Poincaré argued that the choice of geometry is the result 
of agreement but not experience. None of the supporters 
of general relativity disputed this statement. However, 
after the creation of quantum mechanics it became clear 
that this is not the case. According to quantum mechanics, 
the radiation frequency of an atom depends on its size. 
The smaller the atomic size, the greater the energy of the 
emitted photon (14) can be reached. The photon energy 
determines a frequency of an electromagnetic wave, 
which in turn determines the rate of the atomic clock. 
According to general relativity, the atomic clock goes 
slower near a large mass (15). From a new viewpoint 
based on Euclidean geometry, the situation is opposite 
(17). 
 
The main goal of this paper is to attract specialists in the 
field of precision metrology to conduct the experiment 
with atomic clocks. There is an opinion that such 
experiments were carried out many times. But this 
information is not true. Numerous experiments were 
conducted in which the frequencies of nuclei, atoms, 
masers, and lasers at different altitudes were compared. 
These are all experiments to detect the so-called 
gravitational redshift effect. I propose to conduct an 
experiment with atomic clocks, which will compare not 
the frequencies, but the clock readings accumulated for a 
long time. It must be emphasized that supporters of 
general relativity rightly point out that such an experiment 
was not conducted and it should be carried out (Malykin, 
2015). 
 
If the experiment with atomic clocks shows that the rate 
of an atomic clock decreases near Earth, then this will 
confirm that geometry of spacetime in the gravitational 
field becomes Riemannian. This will be a weighty 
argument in favor of the existence of black holes. But if, 
according to equation (17), it is established that an atomic 
clock near Earth is faster, then this will mean that 
geometry of spacetime is not Riemannian, but Euclidean. 
This would mean that the physicists made the mistake of 
not obeying Poincare. This will mean that black holes do 
not exist and the famous gravitational-wave experiment 
(Abbott et al., 2016) is interpreted incorrectly. 
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